a2 United States Patent

US009465842B2

10) Patent No.: US 9,465,842 B2

Konik et al. 45) Date of Patent: *Oct. 11, 2016
(54) QUERY OPTIMIZATION CONSIDERING USPC e 707/718
VIRTUAL MACHINE MIRRORING COSTS See application file for complete search history.
(71) Applicant: International Business Machines (56) References Cited
Corporation, Armonk, NY (US)
U.S. PATENT DOCUMENTS
(72) Inventors: Rafal P. Konik, Oronoco, MN (US); .
Roger A. Mittelstadt, Byron, MN 6,170,044 B1* 122001 McLaughlin GO;]?I?I/(B
(US); Brian R. Muras, Rochester, MN 6,339,769 B1* 1/2002 Cochrane GO6F 17/30457
(US); Mark W. Theuer, Rochester, MN 707/999.002
ontinue
Us) Continued
MACHINES CORPORATION,
Armonk, NY (US) EP 1872249 A2 1/2008
WO 2012065974 Al 5/2012
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days.
. J. Zhu, et al., “Optimizing the Performance of Virtual Machine
Thl,s patent 15 SubJeCt to a terminal dis- Synchronization for Fault Tolerance”, IEEE Transactons on Com-
claimer. puters, vol. 60, No. 12, Dec. 2011, pp. 1718-1729.
(21) Appl. No.: 14/535,901 Primary Examiner — Rehana Perveen
(22) Filed: Nov. 7. 2014 Assistant Examiner — Tiffany Thuy Bui
’ ’ (74) Attorney, Agent, or Firm — Patterson + Sheridan,
(65) Prior Publication Data LLP
US 2015/0112968 Al Apr. 23, 2015 (57) ABSTRACT
Related U.S. Application Data Techniques are disclosed for selecting between query execu-
]] o tion plans in part based on VM mirroring costs. In one
(63) Continuation of application No. 14/057,118, filed on embodiment, a query optimizer determines runtimes for
Oct. 18, 2013. multiple query execution plans, and modifies these runtimes
based on flashing cost, which is itself determined based on
(51) Int. CI. the amount of memory which needs to be flashed to the
GO6F 17/30 (2006.01) secondary memory if each execution plan is executed. In so
HO4L 29/08 (2006.01) doing, the query optimizer may select a execution plan
(52) US. CL which takes a longer to run, but incurs less flashing cost. By
CPC ... GO6F 17/30463 (2013.01); GO6F 17/30442 considering both the query runtime itself and the flashing
(2013.01); HO4L 67/10 (2013.01) cost, the query optimizer may be better able to determine the
(58) Field of Classification Search fastest query execution plan to execute.

CPC ..o GOGF 17/30463; GOGF 17/30442;
HO04L 67/10 7 Claims, 4 Drawing Sheets
COMPUTER SYSTEM 100
130 4 130 5 130 y
M M M
Og'lfJI::;:R APPS APPS APPS
GUEST 08 GUEST 0S GUEST 0S
12y 1329 a2y
—
vCPU | VMEM| |vStorage VIRTUAL VIRTUAL
HARDWARE HARDWARE
VIRTUAL HARDWARE

‘ VIRTUALIZATION SOFTWARE 120 ‘

CPU(8)
12

MEMORY STORAGE
m 118

HARDWARE 110

US 9,465,842 B2

Page 2

(56) References Cited 2010/0318495 Al* 12/2010 Yan GOG6F 17/30575
707/618
U.S. PATENT DOCUMENTS 2012/0084520 A1* 42012 Chouccoovvnnen. GOGF 11/1484
711/162

6,671,786 B2 12/2003 Wang et al. 2012/0191908 Al 7/2012 North et al
77741645 Bl 82010 Clark et al. 2012/0226668 Al* 9/2012 Dhamankar ... GO6F 17/30303
2004/0220942 A1* 11/2004 Agrawal ... GOGF 17/30595 707/690

7077999 1 2013/0073823 Al 3/2013 Hunter et al.
2005/0223271 Al* 10/2005 Butterworth GO6F 11/2082 2013/0117497 AL* 52013 Cui cvvvviviiiins GOG6F 12/121
714/6.3 711/103
2006/0117300 Al* 6/2006 Puthukattukaran . GO6F 11/1658 2014/0115164 Al1* 4/2014 Kalyanaraman .. HO4L 29/08954
717/124 709/226
2007/0174292 A1l* 7/2007 Li .cccovvvnenenenn GOG6F 17/30457 2015/0058295 Al* 2/2015 Veeraraghavan ... GO6F 11/1451
707/999.01 707/649
2008/0040334 Al* 2/2008 Haber GOGF 17/30448 2015/0169239 Al* 6/2015 Sakai ... GOG6F 9/455
707/999.004 711/162
2008/0228835 Al* 9/2008 Lashley GO6F 11/2041

707/999.202

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 4 US 9,465,842 B2

COMPUTER SYSTEM 100

/1301 /_1302 /130,\,

VM VM VM
QUERY
oPTMIZER | | APPS APPS APPS
134 4 136 4 136 136
GUEST 0S GUEST 0S GUEST 0S
132 4 132, 132
VvCPU | |VMEM VIRTUAL VIRTUAL
131 || 133 HARDWARE HARDWARE

VIRTUAL HARDWARE

VIRTUALIZATION SOFTWARE 120

CPU (s) MEMORY STORAGE
112 114 116

HARDWARE 110

FIG. 1

US 9,465,842 B2

Sheet 2 of 4

Oct. 11, 2016

U.S. Patent

¢ 9ld
dNIL
||||||| i r N - =]

_ _
A
_ _ l
| |
| |

L

NSN\ .

c0ze

0€¢ HSV1d

JNILNNY
Ad3N0

U.S. Patent Oct. 11, 2016 Sheet 3 of 4 US 9,465,842 B2

@ / 300

RECEIVE MULTIPLE QUERY RUNTIME PLANS |
FOR A GIVEN QUERY
L
DETERMINE QUERY RUNTIME FOREACHOF |
THE QUERY RUNTIME PLANS
330
340
NO
QUERY HIT FLASH
? Y
EXECUTE QUERY
YES ACCORDING TO
FASTEST RUNTIME
PLAN

MODIFY QUERY RUNTIME BASED ON AMOUNT OF
MEMORY USED, CONSIDERING COST TO FLASH
THE MEMORY AND THE NUMBER OF FLASHES —~— 350
THAT WILL OCCUR OVER THE RUNTIME
OF THE QUERY

Y

EXECUTE QUERY ACCORDING TO FASTEST
MODIFIED RUNTIME PLAN

~— 360

END)=

FIG. 3

U.S. Patent Oct. 11, 2016 Sheet 4 of 4

US 9,465,842 B2

/ 400

RECEIVE QUERY PLAN FOR EXECUTING A QUERY

—~— 410

420

WILL
MANY PAGES BE HIT

NO

BY QUERY?

YES

430

v [

EXECUTE QUERY
ON VM NORMALLY

ROUTE QUERY TO REMOTE MACHINE

I~ 440

Y

FLASH VM TO BACKUP

—— 450

Y

RECEIVE QUERY RESULTS FROM
REMOTE MACHINE

—~— 460

Y

FLASH VM TO BACKUP

~— 470

END

A

FIG. 4

US 9,465,842 B2

1

QUERY OPTIMIZATION CONSIDERING
VIRTUAL MACHINE MIRRORING COSTS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of co-pending U.S.
patent application Ser. No. 14/057,118, filed Oct. 18, 2013.
The aforementioned related patent application is herein
incorporated by reference in its entirety.

BACKGROUND

1. Field of the Invention

The present invention generally relates to query optimi-
zation, and, more specifically, to query optimization that
accounts for virtual machine mirroring costs as part of the
optimization process.

2. Description of Related Art

In a virtual machine (VM) mirroring environment, a
primary VM is periodically halted and mirrored to a sec-
ondary (backup) VM. Doing so allows a client to quickly
and seamlessly connect to the secondary VM if the primary
VM crashes. Various VM mirroring implementations are
publicly available, such as IBM® PowerHA® SystemMir-
ror.

During VM mirroring, execution of the primary VM is
typically halted, after which all state information including
registers, central processing unit (CPU) contents, and modi-
fied random access memory (RAM) pages (also referred to
herein as “dirty” pages) are copied by the primary VM to the
secondary VM. Copying of the state information from the
primary VM to the secondary VM is generally referred to
herein as “flashing.” Once copied, the secondary VM
acknowledges receipt of the pages of state info, and the
primary VM resumes execution. In some implementations,
mirroring may be performed many times a second. Tech-
niques exist for predicting when a VM will be halted and its
state information flashed to the secondary VM.

When VMs run database queries, such as in IBM’s DB2,
pages of temporary information are frequently used as
scratchpads to help in computing a final query result. For
example, a query engine may create temporary indexes,
temporary hash tables, temporary results, etc. as intermedi-
ate result steps in executing a query. Memory pages con-
taining such temporary data are typically mirrored to the
secondary VM. However, this adds substantial overhead to
the mirroring process, especially when the temporary data is
large in size. Further, the temporary data may not be required
on the secondary VM, so long as the secondary VM is able
to execute the query should a failover be required.

SUMMARY

One embodiment provides a method for optimizing query
execution. The method generally includes determining an
original runtime for each of multiple execution plans for a
query. The method further includes, if execution of the query
overlaps with one or more VM mirroring operations, modi-
fying each of the original runtimes of the execution plans
based on time required to perform the mirroring operations
if the query were executed according to the execution plan,
selecting one of the execution plans based on the modified
runtimes, and executing the query according to the selected
execution plan.

Further embodiments of the present invention include one
or more computer-readable storage media storing instruc-

10

15

20

25

30

35

40

45

50

55

60

65

2

tions that, when executed by a client device and a server
system, cause the system to perform one or more aspects of
the disclosed method, and a system programmed to carry out
one or more aspects of the disclosed method.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the invention, briefly sum-
marized above, may be had by reference to the appended
drawings.

It is to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodi-
ments.

FIG. 1 depicts a block diagram of a system in which
embodiments may be implemented.

FIG. 2 illustrates runtimes for example query plans and
flashing of a VM to a secondary VM over a time period,
according to one embodiment.

FIG. 3 illustrates a method for optimizing query execution
that accounts for VM mirroring costs, according to one
embodiment.

FIG. 4 illustrates a method for offloading query execution
to a remote machine, according to one embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein provide techniques for
selecting between query execution plans, while accounting
for VM mirroring costs. As used herein a query execution
plan generally refers to a set of steps used to access data in
a database. In one embodiment, a query optimizer may
determine runtimes for multiple query execution plans and
modify these runtimes based on the amount of memory
which needs to be flashed to the secondary memory if each
execution plan is executed. For example, an execution plan
which includes generating a temporary hash table or other
temporary result may run in a short amount of time, but
require a large cost (in time) to flash the hash table. The
query optimizer may therefore select another execution plan
which takes longer to run, but incurs less flashing cost. By
considering both the query runtime itself and the flashing
cost, the query optimizer may better determine the best
query execution plan to execute.

In another embodiment, queries determined to hit many
memory pages and result in expensive flashing may be
offloaded to a remote VM for execution such that only the
call to the remote VM is flashed. The remote VM may then
return query results to the original VM, and the results
themselves may be flashed again to the secondary VM.

In the following, reference is made to embodiments of the
invention. However, it should be understood that the inven-
tion is not limited to specific described embodiments.
Instead, any combination of the following features and
elements, whether related to different embodiments or not, is
contemplated to implement and practice the invention. Fur-
thermore, although embodiments of the invention may
achieve advantages over other possible solutions and/or over
the prior art, whether or not a particular advantage is
achieved by a given embodiment is not limiting of the
invention. Thus, the following aspects, features, embodi-
ments and advantages are merely illustrative and are not
considered elements or limitations of the appended claims
except where explicitly recited in a claim(s). Likewise,

US 9,465,842 B2

3

reference to “the invention” shall not be construed as a
generalization of any inventive subject matter disclosed
herein and shall not be considered to be an element or
limitation of the appended claims except where explicitly
recited in a claim(s).

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable medium may be trans-
mitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or

20

25

30

35

40

45

55

4

the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

FIG. 1 depicts a block diagram of a computer system 100
in which an embodiment may be implemented. As shown,
computer system 100 supports a virtual machine host 120,
which may itself include virtualization software that permits
hardware resources (e.g., CPU(s) 112, memory 114, storage
116, etc.) to be shared among virtual machines 130, ,; and
provides an interface between guest software running on
virtual machines 130, ,, and the underlying hardware. VM
host 120 may run directly on hardware components of the
computer system 100 or on top of an operating system of the
computer system 100. In a particular embodiment, the VMs
130, _,, may be IBM DB2 virtual machines.

As shown, VM 130, includes virtual hardware, namely a
virtual CPU (vCPU) 131, virtual memory (VMEM) 133, and

US 9,465,842 B2

5

virtual storage (vStorage) 135. In one embodiment, the
virtual storage 135 may store a database, and the VM 130,
further includes a query optimizer 134, which generates and
selects query plans for executing queries against the data-
base. That is, the query optimizer 134, may determine
possible strategies and methods for executing a given query
to generate query plans, and select a best query plan. Any
feasible technique may be used to generate and select
between query plans, including well-known techniques. A
query engine (not shown) may then execute the query
according to the query plan selected by the query optimizer
134,.

In one embodiment, the query optimizer 134, may select
a query plan based on estimated memory usage of the query
plans, including the cost of flashing the memory used to a
secondary (backup) VM during a VM mirroring operation.
The cost of flashing temporary data generated while execut-
ing the query may make one query execution plan less costly
than another, even where it may otherwise cost less to
execute the other execution plan if flashing is not consid-
ered. As discussed in greater detail below, the query opti-
mizer 134, may, in one embodiment, determine runtimes for
multiple query execution plans. The query optimizer 134,
may further determine if the query will coincide with a
flashing operation. If such is the case, the query optimizer
134, may modify the runtimes for the various query execu-
tion plans to account for the cost of flashing, and select a
fastest modified execution plan.

In another embodiment, the query optimizer 134, may
determine that a particular execution plan will affect many
(e.g., greater than a threshold number of) memory pages,
and require those memory pages to be flashed at a great cost.
In such a case, the query optimizer 134, may route the query
to a remote VM so that the query is executed on that remote
VM, with results being returned to the VM 130,. Doing so
may avoid costly flashing of temporary data, as what is
flashed is instead the call to the remote machine and the
returned results. In one embodiment, this approach may be
one of several from which the query optimizer 134, may
choose. That is, the query optimizer 134, may consider
routing the query to a remote VM as one of the query plans,
and select a best query plan among the available query plans.

FIG. 2 illustrates runtimes for example query plans and
flashing of a VM to a secondary VM over a time period. As
shown, query plan 210, has greater runtime (i.e., takes
longer to execute) than query plan 220,. Techniques are
known for estimating query runtime, and any feasible tech-
nique for doing so may be employed. Illustratively, the
runtimes of query plans 210, and 220, do not coincide with
any of the flashes 230. In such a case, a query optimizer may
select query plan 220,, to execute, as no cost to flash
temporary data needs to be taken into account. That is, the
query optimizer may simply select the faster query, query
plan 220, without accounting for flashing costs.

As shown, query plan 220, has greater runtime than query
plan 210,. The runtimes of query plans 210, and 220,
coincide with one of the flashes 230. [llustratively, the query
plan 220, which was less costly than query plan 210 when
flashing did not occur, becomes more costly after accounting
for the cost of flashing. Techniques are known for estimating
when a flashing operation will occur. In one embodiment,
the query optimizer may compare the flashing time to the
time that the query will execute to determine if the runtimes
of query plans 210, and 220, coincide with one of the flashes
230. Then, the query optimizer may account for the cost, in
time or some other measurement, of flashing the memory
during execution of the query plans 210, and 220,. As a

10

15

20

25

30

35

40

45

50

55

60

65

6

result, the query optimizer may select a different query plan
to execute than if only the runtimes of the query plans
themselves were compared. For example, the query plan
210, may use an existing index and be known to be slower
than the query plan 220, which uses a temporary hash table.
However, the query optimizer may keep track of, and
therefore know that a large portion of the existing index is
already resident in memory as a result of the execution of a
previous query, whereas the temporary hash table is not
resident in memory and needs to be created, requiring many
memory pages to be modified. In such a case, flashing the
existing index may require copying only minor changes
made to the index, whereas flashing the temporary hash table
may require copying the many modified memory pages, at
a greater cost. As a result, the query optimizer may select the
query plan 210,, which is slower if, e.g., the cost of flashing
the temporary hash table plus the cost of running the query
220, is greater than the cost of running the query plan 210,
plus the cost of flashing the existing index.

In another embodiment, the query optimizer may deter-
mine that a particular execution plan will affect many
memory pages by, e.g., creating large memory objects, and
require those memory pages to be flashed at a great cost. To
avoid such flashing costs, the query optimizer may route the
query to a remote VM so that the query is executed on that
remote VM, with results being returned to the original VM.
The query optimizer may consider this routing approach as
one of the possible query plans in determining a best query
plan.

FIG. 3 illustrates a method 300 for optimizing query
execution while accounting for VM mirroring costs, accord-
ing to an embodiment. As shown, the method 300 begins at
step 310, where a query optimizer receives multiple query
execution plans for a given query. Note, although discussed
herein as receiving query execution plans, the query opti-
mizer itself may generate such execution plans in some
embodiments. That is, the query optimizer itself may be
responsible for determining possible sets of steps used to
execute the query.

Different execution plans may use different memory resi-
dent objects. The objects may include hash tables, indexes,
buffer pools, sort buffers, temporary tables, and materialized
query tables (MQTs), among others. Some of these objects
may already be in memory from, e.g., a previous query.
Other objects may need to be newly created or loaded to
memory. In one embodiment, the query optimizer may track
which objects, and the percentage of those objects, are
stored in memory over time.

At step 320, the query optimizer determines a query
runtime for each of the query execution plans. The query
runtime may be determined without regard to flashing cost.
Well-known techniques exist for estimating query runtime,
and any feasible technique may be used to determine the
runtimes for the query execution plans.

At step 330, the query optimizer determines whether the
query will hit a flash (i.e., whether execution of the query
will coincide with a flashing operation). In one embodiment,
the query optimizer may first detect the need to flash/backup
the VM to a secondary VM. Techniques are known for
predicting when flashing will occur. The query optimizer
may compare predicted flash times with the times during
which the query is expected to execute to determine whether
the query will coincide with a flash. If the query optimizer
determines that the query will not coincide with a flashing
operation, then, at step 340, the query optimizer executes the
query according to the fastest execution plan, as determined

US 9,465,842 B2

7

at step 320. In another embodiment, the query optimizer
may actively attempt to schedule the query to execute when
flashing does not occur.

If the query optimizer determines that the query will hit
the flash then, at step 350, the query optimizer modifies the
determined query runtime based on an amount of memory
used, considering the cost to flash the memory and the
number of flashes that will occur over the runtime of the
query. As discussed, different query plans may require
different amounts of memory usage, which in turn implies
different costs to flash memory pages. For example, one
query plan may use an existing index which is largely
resident in memory as a result of the execution of a previous
query, whereas another plan may generate a temporary hash
table from scratch, requiring many memory pages to be
modified. In such a case, the query plan which uses the
existing index may be less costly to flash than the temporary
hash table.

In one embodiment, the query optimizer may decide
between execution plans based on a comparison between the
sum of the cost to run the query plans and the cost to
memory flash. That is, if R; and R, are the costs to run query
plans 1 and 2, and CMF, and CMF, are the costs to memory
flash for query plans 1 and 2, respectively, then the query
optimizer may compare R;+CMF, to R,+CMF,, and choose
the lower cost value. For example, if R,=9 and R,=10, but
CMF,=3 seconds to flash large temporary object(s) (e.g., a
hash table), whereas CMF,=1 second to flash an existing
object in memory, then the query optimizer may select query
plan 2 for execution, even though query plan 2 is slower in
strict runtime when flashing cost is not considered.

In another embodiment, the query optimizer may compute
a percentage of an existing object that needs to be loaded
into memory (e.g., from disk) versus the pages of the object
that are already in memory and are unchanged, and therefore
already flashed to the secondary VM. As discussed, the
query optimizer may keep track of the percentages of objects
in memory such as indexes, hash tables, buffer pools, sort
buffers, temporary tables, materialized query tables (MQTs),
etc. The query optimizer may further account for portions of
the object that need to be loaded to memory for a particular
query execution plan to determine the percentage of an
existing object that needs to be loaded into memory versus
the pages of the object already in memory and unchanged.
The query optimizer may then adjust the cost of flashing the
object to the secondary VM based on this computation. For
example, if a execution plan will require using a hash table
or an index object X, the query optimizer may first deter-
mine what percentage of object X is already in memory and
is likely to remain unchanged based on, e.g., known velocity
of changes to the table. The query optimizer may then
determine how many memory pages will be affected by
loading the rest of object X into memory. The query opti-
mizer may adjust the cost to flash only those newly loaded
memory pages for object X, plus any dirty memory pages if
the object is changed. The query optimizer may then use the
adjusted flashing cost of the object to determine if or how to
use the object in the query plan. In another embodiment, the
query optimizer may compare query plans at the time they
are constructed, as opposed to when the plans are completed.

At step 360, the query optimizer selects the query having
the fastest modified execution plan for execution. A query
engine may then execute the query according to the selected
query execution plan.

FIG. 4 illustrates a method 400 for offloading query
execution to a remote machine, according to an embodi-
ment. As shown, the method 400 begins at step 410, where

10

15

20

25

30

35

40

45

50

55

60

65

8

a query optimizer receives a query plan for executing a given
query. As discussed, techniques are known for generating
query execution plans, and the query optimizer may itself
generate the execution plan in some embodiments.

At step 420, the query optimizer determines if many
memory pages will be hit by the query, when the received
query plan is executed. Here, “many” may refer to, e.g.,
exceeding some predefined threshold value. Changes to
many memory pages may result in an expensive flashing
cost. In one embodiment, the query optimizer may deter-
mine, e.g., whether and what percentage of an object used in
the query plan needs to be loaded into memory to execute
the query plan. As discussed, the query optimizer may keep
track of the percentage of objects resident in memory. In
such a case, the query optimizer if many memory pages will
be hit by based on whether and what percentage of an object
used in the query plan is not already resident in, and needs
to be loaded into, memory to execute the query plan.

If it is not the case that many pages will be hit by the
query, then, at step 430, the query optimizer executes the
query on the VM normally. If, however, many pages will be
hit by the query, then, at step 440, the query optimizer routes
the query to a remote VM. Doing so may avoid having to
flash the memory pages to the secondary VM, as the query
is executed on the remote VM, whose memory pages are
modified instead of the original memory pages of the
original VM being modified. In one embodiment, the call to
the remote VM may be given the address of the secondary
VM in case the primary VM fails while the query is running.
In such a case, if the primary VM fails, then query results
may be returned to the secondary VM.

Although discussed above with respect to executing the
query on the VM or routing the query to a remote VM, the
query optimizer may, in another embodiment, compare one
or both of these approaches to each other and to other query
plans to select a best query plan for execution. That is, the
query optimizer may consider routing the query to the
remote VM and executing the query on the original VM as
query plans in selected a best query plan. Although dis-
cussed with respect to routing the query to a remote VM, in
an alternative embodiment, the query may be routed to a
remote physical computer system, as opposed to a VM.

At step 450, the VM is flashed to a secondary VM. Note,
only the call to the remote VM is flashed, which may be
relatively inexpensive compared to flashing temporary data
generated while executing the query. The temporary data is
not flashed, because such data is stored in memory of the
remote machine executing the query.

At step 460, the query optimizer receives the query results
from the remote machine. At step 470, the VM is flashed to
the backup VM again. Here, the results may be flashed to the
backup VM. However, the temporary data generated by the
remote machine while executing the query, which is not
returned, is not flashed. In one embodiment, the cost savings
from avoiding this flashing may be weighed against the cost
of transferring the query and results from the VM to the
remote VM and back, respectively. For example, this may be
used in comparing a query plan which includes routing of
the query to the remote machine to other query plans.

Advantageously, embodiments disclosed herein permit a
query optimizer to consider not only the strict cost of
running a query plan on a traditional VM, but also the cost
of flashing memory to a secondary VM. As a result, the
query optimizer may select a faster query execution plan,
given the flashing costs, even if the execution plan is slower
on a traditional VM in which VM mirroring is not per-
formed. Further, queries which will affect many memory

US 9,465,842 B2

9

pages and result in expensive flashing may be offloaded to
a remote VM, and results returned to the original VM,
thereby avoiding the expensive flashing.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A computer-implemented method for optimizing query
execution, comprising:
determining an original runtime for each of multiple
execution plans for a query; and if execution of the
query overlaps with one or more virtual machine (VM)
mirroring operations:
modifying each of the original runtimes of the execu-
tion plans based on time required to perform the
mirroring operations if the query were executed
according to the execution plan, wherein the time
required to perform the mirroring operations is deter-
mined based on an estimated number of memory
pages that would become dirty and a cost to flash the
dirty memory pages,
selecting one of the execution plans based on the
modified runtimes, and
executing the query according to the selected execution
plan; and
if execution of the query does not overlap with any VM
mirroring operations:

10

15

20

25

10

executing the query according to the execution plan
with the fastest original runtime.
2. The method of claim 1, wherein the time required to
perform the mirroring operations is determined based on a
computed percentage of an object to be loaded into memory
and a computed percentage of the object that is already in the
memory and unchanged, if the query were executed accord-
ing to the execution plan.
3. The method of claim 2, further comprising:
if the computed percentage of the object to be loaded into
the memory is greater than a threshold value, routing
the query to be executed on a remote machine; and

receiving results of the query from the remote machine
after the query is executed.

4. The method of claim 2, further comprising, tracking
percentages of objects that are used in queries and stored in
the memory.

5. The method of claim 4, wherein the objects include at
least one of an index, a hash table, a buffer pool, a sort buffer,
a temporary table, and a materialized query table (MQT).

6. The method of claim 2, further comprising, determining
if or how to use the object in at least one of the query
execution plans based on the computed percentage of the
object to be loaded into the memory and the computed
percentage of the object that is already in the memory.

7. The method of claim 1, further comprising, making an
attempt to schedule the query to execute when VM mirroring
operations do not occur.

#* #* #* #* #*

